169 research outputs found

    Normal pressure hydrocephalus, or Hakim syndrome: review and update

    Get PDF
    This review makes the case that idiopathic normal pressure hydrocephalus (iNPH) is an outdated term because new information indicates that the syndrome is less idiopathic and that the cerebrospinal fluid (CSF) pressure of normal individuals is affected by several factors such as body mass index, age, and sex. Our review updates the epidemiology of iNPH and provides a clinical approach to the management of these patients. All the clinical features of iNPH are common in older individuals, and each has many causes, so the diagnosis is difficult. The first step in reaching an accurate diagnosis is to address the possible contributory factors to the gait abnormality and determine what if any role iNPH may be playing. The two best diagnostic tests are neuroimaging and cerebrospinal fluid (CSF) diversion (large volume lumbar puncture or external lumbar drainage) with pre/post gait evaluation. This review provides an update on the growing evidence that vascular disease, impaired CSF absorption, congenital, and genetic factors all contribute to the pathogenesis of iNPH. We suggest replacing the term iNPH with the term Hakim syndrome (HS) in acknowledgement of the first person to describe this syndrome. Lastly, we discuss the improvements in shunt technology and surgical techniques that have decreased the risks and long-term complications of shunt surgery

    Open-aqueduct LOVA, LIAS, iNPH: a comparative clinical-radiological study exploring the "grey zone" between different forms of chronic adulthood hydrocephalus

    Get PDF
    The definition of chronic adult hydrocephalus encompasses different pathological entities with overlapping characteristics, including long-standing overt ventriculomegaly in adults (LOVA), late-onset idiopathic aqueductal stenosis (LIAS) and idiopathic normal pressure hydrocephalus (iNPH). The aim of our study was to identify preoperative clinical and radiological features peculiar of these diseases providing some pathophysiology inferences on these forms of hydrocephalus

    Integrable Models of Internal Gravity Water Waves Beneath a Flat Surface

    Get PDF
    A two-layer fluid system separated by a pycnocline in the form of an internal wave is considered. The lower layer is bounded below by a flat bottom and the upper layer is bounded above by a flat surface. The fluids are incompressible and inviscid and Coriolis forces as well as currents are taken into consideration. A Hamiltonian formulation is presented and appropriate scaling leads to a KdV approximation. Additionally, considering the lower layer to be infinitely deep leads to a Benjamin-Ono approximation

    Initial clinical experience with frameless optically guided stereotactic radiosurgery/radiotherapy in pediatric patients

    Get PDF
    The objective of this study is to report our initial experience treating pediatric patients with central nervous system tumors using a frameless, optically guided linear accelerator. Pediatric patients were selected for treatment after evaluation by a multidisciplinary neuro-oncology team including neurosurgery, neurology, pathology, oncology, and radiation oncology. Prior to treatment, all patients underwent treatment planning using magnetic resonance imaging (MRI) and treatment simulation on a standard computed tomography scanner (CT). For CT simulation, patients were fitted with a customized plastic face mask with a bite block attached to an optical array with four reflective markers. After ensuring adequate reproducibility, these markers were tracked during treatment by an infra-red camera. All treatments were delivered on a Varian Trilogy linear accelerator. The follow-up period ranges from 1–18 months, with a median follow-up of 6 months. Nine patients, ages ranging from 12 to 19 years old (median age 15 years old), with a variety of tumors have been treated. Patients were treated for juvenile pilocytic astrocytoma (JPA; n = 2), pontine low-grade astrocytoma (n = 1), pituitary adenoma (n = 3), metastatic medulloblastoma (n = 1), acoustic neuroma (n = 1), and pineocytoma (n = 1). We followed patients for a median of 12 months (range 3–18 months) with no in-field failures and were able to obtain encouraging toxicity profiles. Frameless stereotactic optically guided radiosurgery and radiotherapy provides a feasible and accurate tool to treat a number of benign and malignant tumors in children with minimal treatment-related morbidity

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Genome editing reveals a role for OCT4 in human embryogenesis.

    Get PDF
    Despite their fundamental biological and clinical importance, the molecular mechanisms that regulate the first cell fate decisions in the human embryo are not well understood. Here we use CRISPR-Cas9-mediated genome editing to investigate the function of the pluripotency transcription factor OCT4 during human embryogenesis. We identified an efficient OCT4-targeting guide RNA using an inducible human embryonic stem cell-based system and microinjection of mouse zygotes. Using these refined methods, we efficiently and specifically targeted the gene encoding OCT4 (POU5F1) in diploid human zygotes and found that blastocyst development was compromised. Transcriptomics analysis revealed that, in POU5F1-null cells, gene expression was downregulated not only for extra-embryonic trophectoderm genes, such as CDX2, but also for regulators of the pluripotent epiblast, including NANOG. By contrast, Pou5f1-null mouse embryos maintained the expression of orthologous genes, and blastocyst development was established, but maintenance was compromised. We conclude that CRISPR-Cas9-mediated genome editing is a powerful method for investigating gene function in the context of human development.DW was supported by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre Programme. NK was supported by the University of Oxford Clarendon Fund. AB was supported by a British Heart Foundation PhD Studentship (FS/11/77/39327). LV was supported by core grant funding from the Wellcome Trust and Medical Research Council (PSAG028). J-SK was supported by the Institute for Basic Science (IBS-R021-D1). Work in the KKN and JMAT labs was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK, the UK Medical Research Council, and the Wellcome Trust (FC001120 and FC001193)

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    corecore